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A set of rectangular lattice Boltzmann methods for fluid flows is developed. It is shown that reformulating
local equilibrium distribution functions can result in the rectangular lattice Boltzmann models without the aid
of an interpolation for shallow water equations, Navier-Stokes equations, and axisymmetric flow equations. In
addition, schemes for correct incorporation of force terms into the models are proposed for simulations of flows
involving forces in practice. The methods completely retain the innate kinetic features and the simple proce-
dure of the standard lattice Boltzmann method with an additional benefit of being suitable for rectangular
lattices at little extra computational cost. The methodology is illustrated and validated through its application
to different flow problems, demonstrating the potential power of the models.
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I. INTRODUCTION

The lattice Boltzmann method has been shown to be a
successful computational method with a potential capability
of simulating fluid flows in different areas �1–7�. The method
is characterized by its simple procedure, easy treatment of
boundary conditions and parallel feature in programming.
This may make the method an efficient technique to model
complicated physical phenomena in science and engineering.

Over the past years, the study on the lattice Boltzmann
method has received increasing attention, greatly improving
and developing the method. The main restriction of the
method on a uniform square lattice has been investigated.
Chew et al. �8�, Mei and Shyy �9�, and Stiebler et al. �10�
transformed the lattice Boltzmann equation to its differential
form so that they solved it with one of conventional numeri-
cal methods such as finite volume method on arbitrary
meshes, showing the strength of the method. The drawback
is that it loses the original simplicity of the lattice Boltzmann
method and requires additional effort for mesh generation.
Filippova and Hänel �11� proposed a simple scheme for
patched grid refinement in the region around a solid body for
the lattice Boltzmann method. However, the method involves
more procedure to ensure correct transitions for physical
variables such as pressure, velocity, and stresses at different
mesh levels. Compared to above complex schemes, He et al.
�12� formulated a relatively simple lattice Boltzmann model
on a rectangular lattice by using an interpolation method,
which retains most of the desirable features of the standard
method on a square lattice. Subsequently, the similar proce-
dure is applied to the lattice Boltzmann method for solving
many different problems �13–15�, indicating that a nonuni-
form lattice is desirable in practical applications. The pri-
mary downside is that the methods rely on interpolation
schemes with complicated procedure, which introduce addi-
tional numerical viscosities and other artifacts into the lattice
Boltzmann method as indicated by Lallemand and Luo �16�.
To remove interpolations, Bouzidi et al. �17� proposed a lat-
tice Boltzmann method on a two-dimensional �2D� rectangu-
lar grid with the multiple relaxation times �MRTs�. The use
of the MRT provides extra control of the model and success-
fully eliminates interpolations in the numerical procedure.

The disadvantage is that the model still involves complicated
procedure compared with the standard lattice Boltzmann
method.

In this paper, an effort is made to formulate simple lattice
Boltzmann methods for fluid flows on a rectangular lattice
with the same desirable features as that of the standard lattice
Boltzmann method on a square lattice. The methodology has
been applied to developing rectangular lattice Boltzmann
models for shallow water equations, Navier-Stokes equa-
tions, and axisymmetric flow equations in order to demon-
strate its applicability and potential for fluid flows. The meth-
ods are automatically suitable for either square or rectangular
lattices without a modification. Different numerical tests
have been presented for the verification of the methods.

II. LATTICE BOLTZMANN METHOD

The following lattice Boltzmann equation is proposed for
a model on either square or rectangular lattices:

f��x + e��t,t + �t� − f��x,t� = −
1

�
�f� − f�

eq� + Z��t , �1�

where � is the single relaxation time �18�, t is the time, f� is
the distribution function of particles, f�

eq is the local equilib-
rium distribution function �EDF�, �t is the time step, x is the
space vector defined by the Cartesian coordinate system, i.e.,
x= �x ,y� in 2D space and x= �x ,y ,z� for three-dimensional
�3D�, Z� is related to a force term which is specified by Eq.
�3�, and e� is the particle velocity vector in the � link, which,
e.g., for a 2D rectangular lattice with nine particle velocities
�D2Q9� shown in Fig. 1, is defined as

e� = ��0,0� , � = 0

��ex,0�,�0, � ey� , � = 1 – 4

��ex, � ey� , � = 5 – 8,
� �2�

in which ex=�x /�t, ey =�y /�t with lattice sizes of �x and
�y in x and y directions. It becomes a square lattice when
�x=�y. For this rectangular lattice, Z� can generally be ex-
pressed by
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Z� =�
0, � = 0

Fx

6e�x
, � = 1 and 2

Fy

6e�y
, � = 3 and 4

Fi

6e�i
, � = 5 – 8.

� �3�

In the above equation, Fi stands for all the force terms in the
flow equations, whose detailed expression varies from one
case to another and can be specified for a flow problem. It
can be shown that Z� has the properties,

�
�

Z� = 0, �
�

e�iZ� = Fi, �4�

which are the necessary conditions for the conservation of
mass and momentum in the lattice Boltzmann approach.

A. Shallow water equations

Shallow water equations are widely used as a mathemati-
cal model for a variety of fluid flows such as tidal flows,
waves, open channel flows, dam breaks, and atmospheric
flows. In the lattice Boltzmann theory, only if the local equi-
librium distribution function is properly defined can the lat-
tice Boltzmann Eq. �1� be employed to simulate certain flow
equations �5�. For shallow water equations, the following
expression is motivated �see Appendix A for detail�:

f�
eq =�

h − �
�=1

8

f�
eq, � = 0

� gh

4ex
2 +

ux

3e�x
+

ux
2

2ex
2	h , � = 1 and 2

� gh

4ey
2 +

uy

3e�y
+

uy
2

2ey
2	h , � = 3 and 4

� ui

12e�i
+

uxuy

4e�xe�y
	h , � = 5 – 8.

� �5�

The common force terms associated with shallow water
flows are �5�

Fi = − gh
�zb

�xi
−

�bi

�
+

�wi

�
+ Ei, �6�

where xi is the Cartesian coordinate, zb is the bed elevation
above datum, � is the water density, �bi is the bed shear stress
in i direction defined by the velocities, �wi is the wind shear
stress, and Ei is the Coriolis force.

The physical variables, water depth h, and flow velocity ui
are calculated from the distribution function,

h = �
�

f�, ui =
1

h
�
�

e�i f�. �7�

Applying the Chapman-Enskog procedure can show that the
lattice Boltzmann Eq. �1� recovers the shallow water equa-
tions,

�h

�t
+

��huj�
�xj

= 0, �8�

��hui�
�t

+
��huiuj�

�xj
= Fi −

g

2

�h2

�xi
+ �

�2�hui�
�xj

2 , �9�

with the kinematic viscosity �,

� =
exey�t

6
�2� − 1� . �10�

B. Navier-Stokes equations

The Navier-Stokes equations together with the continuity
equation are the general governing equations for fluid flows.
In order to formulate a rectangular lattice Boltzmann model
for the equations, we propose the following local equilibrium
distribution function for the 2D nine-velocity rectangular lat-
tice �see Fig. 1�,

f�
eq =�

� − �
�=1

8

f�
eq, � = 0

��
ey

ex
+

ux

3e�x
+

ux
2

2ex
2	� , � = 1 and 2

��
ex

ey
+

uy

3e�y
+

uy
2

2ey
2	� , � = 3 and 4

� ui

12e�i
+

uxuy

4e�xe�y
	� , � = 5 – 8,

� �11�

in which � is a free constant and its value may affect stabil-
ity. As an individual modulus of each distribution function
must be less than the sum of all the distribution functions
regardless of velocities, it follows that

�
ey

ex
	 1, �

ex

ey
	 1, �12�

from which, we obtain

� 	 min
 ex

ey
,
ey

ex
� 
 1 �13�

or

∆y

∆x

1

57

2

6 4

3

8

FIG. 1. Nine-velocity rectangular lattice �D2Q9�.
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� 	 min
�x

�y
,
�y

�x
� 
 1. �14�

If a lattice ratio is defined as

� = min
�x

�y
,
�y

�x
� = min
 ex

ey
,
ey

ex
� , �15�

then �	�
1. This suggests that smaller � should be used
for small lattice ratio �, which may affect the accuracy like
other numerical methods. However, numerical calculations
indicate that the method is stable and accurate with a value
of �
1 /6, which can produce an �-independent accurate
solution. It is also apparent that �	1 means a rectangular
lattice and �=1 means a square lattice.

For a model on a 3D nineteen-velocity cuboid lattice
�D3Q19� shown in Fig. 2, the following local equilibrium
distribution function will be used:

f�
eq =

⎩
⎪
⎨
⎪
⎧� − �

�=1

18

f�
eq, � = 0

��
eyez

exe
+

ux

3e�x
+

ux
2

2ex
2	� , � = 1 and 2

��
exez

eye
+

uy

3e�y
+

uy
2

2ey
2	� , � = 3 and 4

��
exey

eze
+

uz

3e�z
+

uz
2

2ez
2	� , � = 5 and 6

� ux

24e�x
+

uy

24e�y
+

uxuy

4e�xe�y
	� , � = 7 – 10

� uy

24e�y
+

uz

24e�z
+

uyuz

4e�ye�z
	� , � = 11 – 14

� ux

24e�x
+

uz

24e�z
+

uxuz

4e�xe�z
	� , � = 15 – 18,⎭

⎪
⎬
⎪
⎫

�16�

where

ez =
�z

�t
, e =

�x + �y + �z

3�t
, �17�

in which �z is the lattice size in the vertical direction and the
particle velocity vector for D3Q19 is

e� =�
�0,0,0� , � = 0

��ex,0,0�,�0, � ey,0�,�0,0, � ez� , � = 1 – 6

��ex, � ey,0� , � = 7 – 10

�0, � ey, � ez� , � = 11 – 14

��ex,0, � ez� , � = 15 – 18.
�
�18�

Accordingly, Eq. �3� for Z� needs to be replaced by

Z� =�
0, � = 0

Fx

10e�x
, � = 1 and 2

Fy

10e�y
, � = 3 and 4

Fz

10e�z
, � = 5 and 6

Fx

10e�x
+

Fy

10e�y
, � = 7 – 10

Fy

10e�y
+

Fz

10e�z
, � = 11 – 14

Fx

10e�x
+

Fz

10e�z
, � = 15 – 18,

� �19�

which also holds the properties specified by Eq. �4�.
The detail of using the Chapman-Enskog procedure for

recovery of the following incompressible Navier-Stokes
equations is given in Appendix B:

�uj

�xj
= 0, �20�

�ui

�t
+

��uiuj�
�xj

=
Fi

�
−

1

�

�p

�xi
+ �

�2ui

�xj
2 , �21�

in which the kinematic viscosity � is given by Eq. �10� for
2D case and for 3D it can be calculated as

� =
exeyez�t

6e
�2� − 1� , �22�

which differs from that for the standard lattice Boltzmann
method on a square lattice and reflects the effect of a rectan-
gular lattice, which is similar to that pointed out by Bouzidi
et al. �17� in their MRT model on a rectangular lattice. When
�=1 or a square lattice is applied, the kinematic viscosity �
given by either Eq. �10� or Eq. �22� reverts to that for the
conventional lattice Boltzmann method; also the same sound
speed of e /�3 is recovered if �=1 /6 is used, in which e
=ex=ey. This is also consistent with the reported studies by
Bouzidi et al. �17�.
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FIG. 2. �Color online� Nineteen-velocity cuboid lattice
�D3Q19�.
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The density � and flow velocity ui are determined from
the distribution function,

� = �
�

f�, ui =
1

�
�
�

e�i f�. �23�

C. Axisymmetric flow equations

Axisymmetric flows represent numerous important flow
problems in practice �19–23�. In theory, 3D axisymmetric
flows are effectively 2D problems in a cylindrical coordinate
system. To make use of this advantage, Halliday et al. �24�
first studied the lattice Boltzmann method for axisymmetric
flows in 2001. Since then, a few more methods have been
developed �22,25,26�. Here, we take Zhou’s model �25� as an
example to formulate a rectangular lattice Boltzmann model
on D2Q9 �see Fig. 1� and the methodology can be extended
to the other schemes such as the method of Guo et al. �26�.
In Zhou’s model, the lattice Boltzmann Eq. �1� includes an
additional source or sink term �,

f��x + e��t,t + �t� − f��x,t� = −
1

�
�f� − f�

eq� + ��t + Z��t .

�24�

Since a 3D axisymmetric flow is a 2D flow problem, the
local equilibrium distribution function �11� and the expres-
sion �3� for Z� can directly be used. Again, employing the
Chapman-Enskog analysis shows that the lattice Boltzmann
Eq. �24� can simulate the following axisymmetric flow equa-
tions in a 2D cylindrical coordinate system �x ,r�,

�uj

�xj
= −

ur

r
, �25�

�ui

�t
+

��uiuj�
�xj

= −
1

�

�p

�xi
+ �

�2ui

�xj
2 +

Fi

�
, �26�

in which

� = −
�

9

ur

r
�27�

and

Fi = ���

r

�ui

�r
−

uiur

r
−

�ui

r2 ir	 , �28�

where x and r are the coordinates in axial and radial direc-
tions, respectively, and mn is the Kronecker delta function
defined by

mn = 
0, m � n

1, m = n .
� �29�

Similarly, Eq. �23� is used to calculate the density � and flow
velocity ui.

III. NUMERICAL EXAMPLES

The proposed methods are applied to solving different
flow problems. They cover typical shallow water flow prob-

lems �a still flow over a bump, a tidal flow over an irregular
bed topography, a flow in a straight channel, and a flow
through a strongly curved bend channel�, 2D Couette-
Poiseuille flow, and 3D Womersley flow. In the simulations,
the bounce-back scheme is applied to no-slip boundary con-
dition and the elastic-collision scheme �27� is applied to
semislip or slip boundary conditions. All the dimensional
physical variables in SI units are used.

A. Stationary case

The first problem is a still flow over a bump in a channel.
This is a benchmark test to validate a numerical method for
shallow water flows. As there is a nonzero force associated
with the bed slope in the shallow water equations in this
case, many numerical methods fail to reproduce the exact
solution; hence it is an appropriate case to verify the treat-
ment of the force term in the proposed methods. The bed
topography is the same as that used by LeVeque �28� and is
given by

zb�x� = �0.25cos
��x − 0.5�

0.1
+ 1� , �x − 0.5� 	 0.1

0, otherwise.
�

�30�

The channel has the length of 1. In the numerical computa-
tions, the 2D code is purposely applied with 200�25 rect-
angular lattices: �y=0.0025, �x=2�y, �t=0.0001, and �
=1.2. The initial conditions are ui=0 and h+zb=1, for which
the exact solution is also ui�0 and h+zb�1. After a steady
solution is reached, it is found that the numerical results are
accurate up to computer precision and the comparisons for
water level and velocity are plotted in Figs. 3 and 4, respec-
tively, confirming the accuracy of the proposed method.

B. Tidal flow

The second is a tidal flow over an irregular bed as a fur-
ther test, which is a common flow problem in coastal engi-
neering. The bed is defined with the data listed in Table I.
The initial and boundary conditions are

h�x,0� = 16 − zb�x� , �31�

ux�x,0� = 0 �32�

and

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h+
z b

(m
)

x (m)

Numerical results
Exact solution

FIG. 3. Comparison of profile with exact solution.
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h�0,t� = 20 − 4 sin�� 4t

86 400
+

1

2
	� , �33�

ux�L,t� = 0, �34�

where L=1500 is the channel length.
Under these conditions, the tidal flow is relatively short

and an asymptotic analytical solution is �29�

h�x,t� = 20 − zb�x� − 4 sin�� 4t

86 400
+

1

2
	� �35�

and

ux�x,t� =
�x − L��

5400h�x,t�
cos�� 4t

86 400
+

1

2
	� . �36�

In the simulation, rectangular lattices with 200�25 cells
are also used: �x=7.5, �y=2�x, �t=0.3, and �=1.5. In or-
der to compare the numerical results with the asymptotic
analytical solution, we choose two numerical results at t
=10 800 and t=32 400, which correspond to the half-risen
tidal flow with maximum positive velocities and to the half-
ebb tidal flow with maximum negative velocities. Compari-
sons of velocities are depicted in Figs. 5 and 6, respectively.
This shows excellent agreements between the numerical pre-
dictions and the analytical solutions.

C. 2D flow in a straight channel

The third test is a steady flow through a straight channel
with the width of 2y0=0.8. The analytical solution is a para-
bolic profile for the velocity component ux in the streamline
direction,

ux�y� = U01 − � y − y0

y0
	2� . �37�

The discharge Q=0.0123 is specified at the inflow boundary.
200�40 rectangular lattices are used with �y=0.02, �x
=2�y, �t=0.004, and �=0.7. After the steady solution is
obtained, the velocity profile is shown in Fig. 7 and com-
pared with the analytical solution in the figure, revealing
excellent agreement.

D. Flow in a strongly curved bend channel

The forth is a steady flow through a strongly curved bend
channel, which represents one of the most complex flows
encountered in a natural meandering river. The same flow in
a 180° bend channel as Run No. 8 of Rozovskii’s experi-
ments �30� shown in Fig. 8 is simulated. The channel width
is 0.8; the internal radius is 0.4; and there is no bed slope.
The flow conditions are: flow discharge is 0.0123; entrance
water depth is 0.063; and the channel bed is rough with
Chezy coefficient Cz=32.

In numerical computation, 400�125 square lattices are
used. �x=�y=0.02, �t=0.013 33, and �=0.6. At the up-
stream boundary, velocity ux is adjusted to retain the constant
discharge; and uy =0. At the downstream boundary the depth
is specified as 0.05. These conditions are transformed to suit-
able conditions for distribution functions with the method
described by Zhou �5�. At the channel sides, the semislip
boundary conditions are used with Cf =0.03 �5�.

A steady solution is achieved after 5000 iterations. Com-
parisons of the tangential velocities between numerical re-
sults and experimental data at several cross sections are de-
picted in Fig. 8, showing good agreements. In addition, the
numerical results are also obtained with the lattice Boltz-
mann method for shallow water flows �LABSWE� using the

-0.002

-0.001

0

0.001

0.002

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u x
(m

/s
)

x (m)

Numerical results
Exact solution

FIG. 4. Comparison of velocity with exact solution.

TABLE I. Bed elevation zb for irregular bed.

x�m� 0 50 100 150 250 300 350 400 425 435

zb�m� 0 0 2.5 5 5 3 5 5 7.5 8

x�m� 450 475 500 505 530 550 565 575 600 650

zb�m� 9 9 9.1 9 9 6 5.5 5.5 5 4

x�m� 700 750 800 820 900 950 1000 1500

zb�m� 3 3 2.3 2 1.2 0.4 0 0

0

0.01

0.02

0.03

0.04

0.05

0.06

0 250 500 750 1000 1250 1500

u x
(m

/s
)

x (m)

Numerical result
Analytical solution

FIG. 5. Comparison of velocity at t=10 800 s.
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original local equilibrium distribution function �31� and are
shown in the figure, which indicates that both results are
almost identical. This further confirms the accuracy of the
proposed method.

E. Couette-Poiseuille flow

The fifth is a numerical simulation of the Couette-
Poiseuille flow to verify the rectangular lattice Boltzmann
model for Navier-Stokes equations. This is a steady flow
within parallel plane boundaries and driven by constant pres-
sure gradient with the following analytical solution �32�:

ux�y� = Ut
y

2y0
+ U01 − � y − y0

y0
	2� , �38�

where Ut is the velocity component ux of the plane at y
=2y0 in the x direction. The boundary conditions are

ux�y� = 
0, y = 0

Ut, y = 2y0
� �39�

and

uy�y� = 0. �40�

We consider here three different cases with Ut=0, Ut=0.1,
and Ut=−0.1 for a discharge Q=0.3. The width between the
two planes is 2y0=1.5 and the length is 4.95. At the inflow
boundary, the discharge is specified. At the plane boundaries,

for y=0, no-slip boundary condition is applied, and for y
=2y0, the unknown distribution functions f4, f6, f8, and � can
be determined following the scheme by Zou and He �33�
based on the boundary conditions �39� and �40� as

� = �f0 + f1 + f2 + 2�f3 + f5 + f7�� , �41�

f4 = f3, �42�

f6 = f5 +
1

2
�f1 − f2� −

�Ut

2ex
, �43�

f8 = f7 −
1

2
�f1 − f2� +

�Ut

2ex
. �44�

66�40 rectangular lattices are used with �y=0.0375, �x
=2�y, �t=0.0375, �=0.7, and �=1000 in all the computa-
tions. After the steady solutions are reached, we compare the
numerical results with the analytical solutions, which are
plotted in Fig. 9, showing excellent agreements.
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FIG. 6. Comparison of velocity at t=32 400 s.
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FIG. 7. Comparison of velocity profile.
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FIG. 8. Comparisons of the tangential velocities �S is distance
between cross section and entrance along channel central line�.
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FIG. 9. Comparisons of velocity profiles �symbols stand for nu-
merical results�.
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F. 3D Womersley flow

The last is the prediction of a 3D Womersley flow or a
pulsatile flow in a pipe to validate the rectangular lattice
Boltzmann model for axisymmetric flow. The flow is driven
by a periodic pressure gradient at the inlet of the pipe and the
pressure gradient is normally given by

dp

dx
= p0 cos��t� , �45�

where p0 is the maximum amplitude of the pressure variation
and �=2� /T is the angular frequency, in which T is the
period.

The Reynolds number is defined as Re=UcD /� with the
characteristic velocity Uc given by

Uc =
p0�2

4��
=

p0R2

4��
, �46�

in which �=R�� /� is the Womersley number, where R is
the pipe radius and D is the diameter. The analytical solution
for the velocity component in axial direction for the Womer-
sley flow is

ux�r,t� = Re
 p0

i��
1 −

J0�r�/R�
J0��� �ei�t� , �47�

where J0 is the zeroth order Bessel function of the first type,
i is the imaginary unit, �= �−�+ i�� /�2, and Re denotes the
real part of a complex number.

In the computation, �=3, p0=0.001, D=40, T=1200, �
=8, and UC=1, which give Re=1200. 80�42 rectangular
lattices with �y=0.97561 and �x=1.5�y as well as �t
=0.9518 and �=0.6 are used in the simulation. The numeri-
cal solutions at different times are obtained after initial run-
ning time of 10T. The corresponding results for velocity ux
are shown in Figs. 10 and 11, in which they are further
compared with the analytical solution �47�, exhibiting good
agreements.

IV. CONCLUSIONS

Rectangular lattice Boltzmann methods for fluid flows are
presented. Numerical verifications have been carried out by
simulations of different shallow water flows, Couette-
Poiseuille flow and Womersley flow, showing good agree-
ments between the numerical results and analytical solutions.
The models are simple and accurate at the same simple pro-
cedure on either square or rectangular lattices as that of the
standard lattice Boltzmann method at little additional com-
putational cost. This provides further flexibility for solving
flow problems. The methodology can be extended to the lat-
tice Boltzmann method for other flow equations, leading to a
wide range of applications in science and engineering.
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APPENDIX A: MOTIVATION FOR THE LOCAL
EQUILIBRIUM DISTRIBUTION FUNCTION

According to the lattice Boltzmann approaches, the cor-
rect recovery of the macroscopic equations requires that the
local equilibrium distribution functions must satisfy

�
�

f�
eq = h , �A1�

�
�

e�i f�
eq = hui, �A2�

�
�

e�ie�j f�
eq =

1

2
gh2ij + huiuj , �A3�

for the shallow water equations and

�
�

f�
eq = � , �A4�
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FIG. 10. Comparisons when ux is increasing at different time t
=nT /16 with n=0,1 ,2 ,3 ,12,13,14,15.
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FIG. 11. Comparisons when ux is decreasing at different time
t=nT /16 with n=4,5 ,6 ,7 ,8 ,9 ,10,11.
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�
�

e�i f�
eq = �ui, �A5�

�
�

e�ie�j f�
eq = pij + �uiuj , �A6�

for the Navier-Stokes equations.
Taking account of the symmetric features of the rectangu-

lar lattice, we may suggest that the local equilibrium distri-
bution function, e.g., for D2Q9, has the following form:

f�
eq =��

A0 + A1
ux

e�x
+ A2

ux
2

ex
2	� , � = 1 and 2

�B0 + B1
uy

e�y
+ B2

uy
2

ey
2	� , � = 3 and 4

�C1
ui

e�i
+ C2

uxuy

e�xe�y
	� , � = 5 – 8

� �A7�

and

f0
eq = � − �

�=1

8

f�
eq, �A8�

in which �=h for the shallow water equations or �=� for the
Navier-Stokes equations.

Based on the aforementioned three constraints, after some
mathematical manipulation, the coefficients in the above ex-
pression can be decided, leading to the local equilibrium dis-
tribution functions for the shallow water equations, Eq. �5�,
and for the Navier-Stokes equations, Eq. �11�. Similarly, we
can determine the expression for the local equilibrium distri-
bution function �16� for 3D Navier-Stokes equations based
on D3Q19.

It may be pointed out that, e.g., for the Navier-Stokes
equations, combing constraints �A4� and �A5� with corre-
sponding expression �23� for physical variables forms the
conservation conditions for mass and momentum in the
method �5�,

�
�

f� = �
�

f�
eq �A9�

and

�
�

e�i f� = �
�

e�i f�
eq. �A10�

APPENDIX B: RECOVERY OF THE NAVIER-STOKES
EQUATIONS

Without loss of generality, we apply the Chapman-Enskog
analysis to recovering the 2D Navier-Stokes equations in de-
tail and the similar procedure can be applied to recovery of
the other flow equations like the shallow water equations.

Assuming �t is small and

�t = � , �B1�

substitution of Eq. �B1� into Eq. �1� leads to

f��x + e��,t + �� − f��x,t� = −
1

�
�f� − f�

eq� + Z�� . �B2�

Taking a Taylor expansion to the left-hand side of the above
equation in time and space around point �x , t�, we have

�� �

�t
+ e�j

�

�xj
	 f� +

1

2
�2� �

�t
+ e�j

�

�xj
	2

f� + O��3�

= −
1

�
�f� − f�

eq� + Z�� . �B3�

According to the Chapman-Enskog expansion, f� can be
written in a series of �,

f� = f�
�0� + �f�

�1� + �2f�
�2� + O��3� . �B4�

The centered scheme �5� is used for the term Z�,

Z� = Z��x +
1

2
e��,t +

1

2
�	 , �B5�

which can also be written, via a Taylor expansion, as

Z��x +
1

2
e��,t +

1

2
�	 = Z� +

1

2
�� �

�t
+ e�j

�

�xj
	Z� + O��2� .

�B6�

After inserting Eqs. �B4� and �B6� into Eq. �B3�, the equa-
tion to order �0 is

f�
�0� = f�

eq �B7�

to order �

� �

�t
+ e�j

�

�xj
	 f�

�0� = −
1

�
f�

�1� + Z� �B8�

and to order �2

� �

�t
+ e�j

�

�xj
	 f�

�1� +
1

2
� �

�t
+ e�j

�

�xj
	2

f�
�0�

= −
1

�
f�

�2� +
1

2
� �

�t
+ e�j

�

�xj
	Z�. �B9�

Applying Eq. �B8�, we can write the above equation as

�1 −
1

2�
	� �

�t
+ e�j

�

�xj
	 f�

�1� = −
1

�
f�

�2�. �B10�

From Eq. �B8�+��Eq. �B10�, we have

� �

�t
+ e�j

�

�xj
	 f�

�0� + ��1 −
1

2�
	� �

�t
+ e�j

�

�xj
	 f�

�1�

= −
1

�
�f�

�1� + �f�
�2�� + Z�. �B11�

Summation of the above equation over � provides

�

�t
�
�

f�
�0� +

�

�xj
�
�

e�j f�
�0� = 0. �B12�

Using the local equilibrium distribution function �11� to
evaluate the terms in the above results in
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��

�t
+

���uj�
�xj

= 0. �B13�

If the density variation is small enough and can be neglected,
the above becomes the continuity Eq. �20� for incompress-
ible flows.

Taking �e�i�Eq. �B8�+��Eq. �B10�� about � yields

�

�t
�
�

e�i f�
�0� +

��ij
�0�

�xj
=

��ij
�1�

�xj
+ Fi, �B14�

where �ij
�0� is the zeroth-order momentum flux tensor,

�ij
�0� = �

�

e�ie�j f�
�0�, �B15�

and �ij
�1� is the first-order momentum flux tensor,

�ij
�1� = −

�

2�
�2� − 1��

�

e�ie�j f�
�1�. �B16�

Evaluating terms in Eq. �B15� with Eq. �11�, we have

�ij
�0� = pij + �uiuj , �B17�

where p=2��exey is the pressure, leading to a sound speed,
Cs=�2�exey. Substitution of the above equation into Eq.
�B14� results in

���ui�
�t

+
���uiuj�

�xj
= Fi −

�p

�xi
+

��ij
�1�

�xj
. �B18�

Applying Eq. �B8� we can rewrite Eq. �B16� as

�ij
�1� =

�

2
�2� − 1��

�

e�ie�j� �

�t
+ e�k

�

�xk
	 f�

�0�, �B19�

which can also be written with Eq. �B15� as

�ij
�1� =

�

2
�2� − 1�

�

�t
�ij

�0� +
�

2
�2� − 1�

�

�xk
�
�

e�ie�je�kf�
�0�.

�B20�

The second term in the above equation can be approximately
evaluated with Eqs. �11� and �B7� as

�

�xk
�
�

e�ie�je�kf�
�0� �

exey

3

�

�xk
��ui jk + �ujki + �ukij� .

�B21�

If we assume that characteristic velocity is Uc, length Lc, and
time tc, we have that the term �� /�t�ij

�0�� is of order �Uc
2 / tc

and the term �� /�xk��e�ie�je�kf�
�0�� is of order �exeyUc /Lc,

based on which we obtain that the ratio of the former to the
latter terms has the order,

O� �/�t�ij
�0�

�/�xk��e�ie�je�kf�
�0�	 = O� �Uc

2/tc

�exeyUc/Lc
	 = O� Uc

�exey
	2

= O�Uc

Cs
	2

= O�M2� , �B22�

in which M =Uc /Cs is the Mach number. It follows that the
first term in Eq. �B20� is very small compared with the sec-
ond term and can be neglected if M �1; hence Eq. �B20�
after Eq. �B21� is substituted becomes

�ij
�1� =

exey�

6
�2� − 1�

�

�xk
��ui jk + �ujki + �ukij�

�B23�

or

�ij
�1� = � ���ui�

�xj
+

���uj�
�xi

+
���uk�

�xk
ij� �B24�

with the kinematic viscosity defined by

� =
exey�t

6
�2� − 1� . �B25�

Differentiating Eq. �B24� with respect to xj yields

��ij
�1�

�xj
= �

�

�xj
 ���ui�

�xj
+

���uj�
�xi

+
���uk�

�xk
ij� . �B26�

After applying the continuity Eq. �20� to the above, we have

��ij
�1�

�xj
= �

�2��ui�
�xj

2 . �B27�

Combining this with Eq. �B18� results in

���ui�
�t

+
���uiuj�

�xj
= Fi −

�p

�xi
+ �

�2��ui�
�xj

2 . �B28�

Again, the density variation is assumed to be small enough,
the above is just the Navier-Stokes Eq. �21� for incompress-
ible flows.
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